Answer any four of the six questions. All questions carry equal weight.

1. Consider a multinomial population such that its probabilities $\pi_1 = \pi_1(\boldsymbol{\theta}), ..., \pi_k = \pi_k(\boldsymbol{\theta})$ are functions of the parameter $\boldsymbol{\theta}$ where $\boldsymbol{\theta} = (\theta_1, ..., \theta_q)$ is a q-vector, q < k - 1. Assume that we have sample of size n.

Let $\widehat{\boldsymbol{\theta}}$ be an estimator of $\boldsymbol{\theta}$ such that $\sqrt{n}\left(\widehat{\boldsymbol{\theta}}-\boldsymbol{\theta}\right) - \left(-M_{\boldsymbol{\theta}}'M_{\boldsymbol{\theta}}\right)^{-1}M_{\boldsymbol{\theta}}'\mathbf{V}_n \xrightarrow{p} 0$ where $M_{\boldsymbol{\theta}} = \left[\frac{1}{\sqrt{\pi_j(\boldsymbol{\theta})}}\frac{\partial \pi_j(\boldsymbol{\theta})}{\partial \theta_s}\right]_{k \times q}$ (assumed to be of rank q) and

$$\mathbf{V}_{n}^{\prime} = \left(\frac{N_{1} - n\pi_{1}\left(\boldsymbol{\theta}\right)}{\sqrt{n\pi_{1}\left(\boldsymbol{\theta}\right)}}, ..., \frac{N_{k} - n\pi_{k}\left(\boldsymbol{\theta}\right)}{\sqrt{n\pi_{k}\left(\boldsymbol{\theta}\right)}}\right).$$

Show that (with N_j as in question 1 above), if

$$\chi_n^2 = \sum_{j=1}^k \frac{\left(N_j - n\pi_j\left(\widehat{\boldsymbol{\theta}}\right)\right)^2}{n\pi_j\left(\widehat{\boldsymbol{\theta}}\right)},$$

then, when $\boldsymbol{\theta}$ is the true parameter,

$$\chi_n^2 - \mathbf{V}_n' \left(\mathbf{I}_k - M_{\boldsymbol{\theta}} \left(M_{\boldsymbol{\theta}}' M_{\boldsymbol{\theta}} \right)^{-1} M_{\boldsymbol{\theta}}' \right) \mathbf{V}_n \xrightarrow{p} 0.$$

Show, when θ is the true parameter, that χ_n^2 converges in distribution to the $\chi^2(l)$ with *l* degrees of freedom. Find the degrees of freedom *l*.

2. Suppose that the individuals of a population are described as belonging to one of r categories $A_1, ..., A_r$ with respect to an attribute A, and to one of s categories $B_1, ..., B_r$ with respect to another attribute B. Let π_{ij} be the probability of the occurrence of the joint category A_iB_j .

If we have a sample of size n from this population, then we have the respective frequencies N_{ij} corresponding to the categories $A_i B_j$.

We want to test the null hypothesis that the attributes are independent, that is, π_{ij} satisfy the constraints

$$\pi_{ij} = \pi_i . \pi_{\cdot j}$$

where π_i and π_{j} are marginal probabilities of the events A_i and B_j respectively. For this purpose, the following χ_n^2 statistic is used:

$$\chi_n^2 = \sum_{j=1}^s \sum_{i=1}^r \frac{\left(N_{ij} - \frac{N_{i} \cdot N_{\cdot j}}{n}\right)^2}{\frac{N_{i} \cdot N_{\cdot j}}{n}},$$

where

$$N_{i.} = \sum_{j=1}^{s} N_{ij}$$
 and $N_{\cdot j} = \sum_{i=1}^{r} N_{ij}$.

Show that χ^2_n has asymptotically a $\chi^2(l)$ with l degrees of freedom. Find the degrees of freedom l.

3. Let $(X_1, ..., X_n)$ be a random sample from the population with distribution function F and let $(Y_1, ..., Y_m)$ be a random sample from the population with distribution function G. Assume that the sample $(X_1, ..., X_n)$ is independent of $(Y_1, ..., Y_m)$.

(a). Combine the two samples, and let $R_1, ..., R_n$ be the respective ranks of $X_1, ..., X_n$ and let $R_{n+1}, ..., R_{n+m}$ be the respective ranks of $Y_1, ..., Y_m$ in the combined sample. Show that $\sum_{i=n+1}^{n+m} R_i$, the combined ranks of the second sample, satisfies

$$\sum_{i=n+1}^{n+m} R_i = U_{n,m} + \frac{1}{2}m(m+1)$$

where

 $U_{n,m}$ = the number of pairs (X_i, Y_j) such that $X_i < Y_j$.

(b). Find the variance of $U_{n,m}$.

(c). Show that $\frac{U_{n,m}}{nm}$ converges in probability to $p = P[X_1 < Y_1] = E[F(Y_1)]$, as $n, m \to \infty$.

4. Let $(X_1, ..., X_n)$ be a random sample from the population with cumulative distribution function F(x). Let

$$F_n(x) = \sum_{i=1}^n I_{(-\infty,x]}(X_i)$$

be the empirical or sample cumulative distribution function based on the sample $(X_1, ..., X_n)$. Assume that F(x) is continuous in x.

(a) Show that $\sup_{-\infty < x < \infty} |F_n(x) - F(x)| \xrightarrow{p} 0$. (a) Show that the process $(\sqrt{n} (F_n(x) - F(x)); -\infty < x < \infty)$ converges in distribution to the Gaussian process $(\eta(F(x)); -\infty < x < \infty)$, where

$$E[\eta(t)] = 0$$
 for all $0 \le t \le 1$

and

$$E[\eta(s)\eta(t)] = \min\{t,s\} - ts \quad \text{for all } 0 \le s, t \le 1.$$

5. Let $X_1, ..., X_n$ be i.i.d. sample from a population with cumulative distribution function having mean μ and variance σ^2 . Show that

$$\frac{1}{\sqrt{n}}\sum \left|X_{k}-\overline{X}_{n}\right|-\frac{1}{\sqrt{n}}\sum \left|X_{k}-\mu\right|-\sqrt{n}\left(\overline{X}_{n}-\mu\right)\lambda_{F}^{\prime}\left(\mu\right)\xrightarrow{p}0$$

where $\lambda_F(t) = E_F[|X_1 - t|].$

Using this deduce the asymptotic distribution of $\sqrt{n} \left(\frac{\sum |X_k - \overline{X}_n|}{n} - \lambda_F(\mu) \right)$.

6. Suppose we want to estimate the mean θ of a normal population with known variance σ^2 on the basis of a sample $X_1, ..., X_n$. Assume that θ has a prior distribution that is normally distributed with mean μ and variance τ^2 . Find the Bayes rule for estimating θ under the quadratic loss $l(\theta, a) = (\theta - a)^2$.

Show that the sample mean $\overline{X}_n = \frac{1}{n} (X_1 + ... + X_n)$ is an admissible estimator for θ under the quadratic loss $l(\theta, a) = (\theta - a)^2$. Further state and prove the result upon which you obtain this conclusion.